Radiation Safety: Ionizing Radiation Equipment

Louie Tonry, CHP
Radiation Safety Officer
Overview

- Characteristics of Ionizing Radiation
- Radiation Units
- Biological Effects
- Occupational Dose Limits
- ALARA Philosophy
- Regulations, Rights & Responsibilities
- Dosimetry
- Summary & Questions
Characteristics

- Ionizing Radiation
 - Energy that is propagated through space and is of sufficient energy to be capable of producing ion pairs in matter.
 - Is of concern because it can transfer enough energy to damage or kill cells.
Types of Ionizing Radiation

- Ionizing radiation can be particulate or electromagnetic

 Particulate
 - α (alpha)
 - β (beta) or e^- (electrons)
 - η (neutron)

 Electromagnetic
 - γ (gamma) ray
 - x-ray
Units of Measure

Activity - This is a unit which provide the number of atoms undergoing nuclear transformations (or decaying) per unit time. It tells the strength of a radioactive source.

- Curie (Ci) \((3.7 \times 10^{10} \text{ disintegrations per second})\)
- Becquerel (Bq) \((37 \text{ GBq}) (1 \text{ Bq} = 1 \text{ disintegration per second})\)
Units of Measure

- Exposure is a measure of the strength of a radiation field.
- It is measured by counting the number of ion pairs created in a known volume of air by x or γ radiation at standard temperature and pressure (STP)
 - Roentgen (R)
 - Coulombs/kilogram (C/kg)
Units of Measure

- Dose – This is a measure of the amount of energy deposited in a unit mass of material. This can refer to energy deposited in a person or a block of granite.
 - Rad (100 ergs/gm)
 - Gray (Gy) (1 Gy = 100 R)
Units of Measure

- Dose Equivalent – This unit is important to us because it describes the relative biological damage caused by the deposition of a certain amount of energy or dose.

- These are the units used on our dosimetry records.
 - Rem = Rad x QF (1e, 5n, 20p/a)
 - Sievert (Sv) (1 Sv = 100 Rem)
Cell Sensitivity

- Tribondeau and Bergonie (1906), two French radiobiologists, generalized that a cell's radiosensitivity is related to its reproduction rate and specificity.
- The faster a cell divides and the less specific a cell’s function is, the more sensitive the cell is to radiation damage.
Cell Sensitivity

Two types of biological damage can occur in cells

- Deterministic effects – these are also known as acute effects and occur from high doses of radiation
- Stochastic effects – these are known as statistical effects because they are felt to increase the probability or “risk” of biological damage
Cell Sensitivity

- Deterministic effects occur within days or weeks after exposure
 - Examples include erythema, marked changes in blood cell count, cataracts, bloody stools

- Stochastic effects occur many years after exposure and may result from small chronic exposures.
 - Cancer induction is the primary stochastic risk from chronic exposures.
 - Stochastic risk from chronic exposures increase over time.
Fetal Exposure

- Fetal tissue is particularly sensitive to radiation exposure because fetal cells are rapidly dividing and non-specific.
- During the first trimester fetal tissue is the most radiosensitive due to the rate at which they are dividing during that period.
- Quite high exposures are required to cause fetal syndrome.
Fetal Exposure

- Pregnant workers may declare their pregnancy with the Radiation Safety Officer and receive special exposure monitoring.
- If you have any questions about fetal radiation exposures or special monitoring contact the Radiation Safety Officer.
- For more information refer to USNRC Reg guide 8.29.
Biological Effects of Radiation

- It is thought that radiation effects vary with different exposure levels
- Two theories prevail regarding exposure vs. biological effects
- The theories are
 - Threshold Theory
 - Non-Threshold Theory
Biological Effects of Radiation

- Threshold Theory – the threshold theory states that below a certain exposure *no* biological effect will occur
Biological Effects of Radiation

- Non-Threshold Theory – the non-threshold theory states that even for the smallest exposure some risk of biological damage may occur.
- This theory is the most conservative and is used for establishing Radiation Protection practices.
Biological Effects of Radiation

- Non-Threshold
- Threshold

Radiation Dose (rad)

Biological Response (%)
Occupational Dose Limits

- For an occupational worker (a worker whose duties require exposure to radiation on a routine basis) there are limits established for radiation exposures.
- These limits are considered safe based on many years of evaluations of radiation workers.
Occupational Dose Limits

The State Occupational Exposure Limits are

- **Whole Body**
 - 5 rem per year
- **Lens of the Eye**
 - 15 rem per year
- **Extremity/Skin of the whole body**
 - 50 rem per year
Occupational Dose Limits

- Even though we have State limits on occupational exposures, the goal of Radiation Safety is to keep all exposures As Low As Reasonably Achievable (ALARA)

- Workers are encouraged to do every thing possible to keep their exposures low
RADIATION PROTECTION

ALARA
The Three Protection Principles

- **TIME** - Exposure is directly proportional to amount of time spent in a radiation area.

- **DISTANCE** - Exposure intensity from a source will decrease exponentially per unit distance. Apply the inverse square law to determine Δ intensity.

- **SHIELDING** - Will protect you dramatically from potential exposure (if you use it).
The Three Protection Principles

- **TIME** – Minimize the time spent around radioactive material or radiation producing devices

- **DISTANCE** – Maximize the distance from radiation sources
 - doubling the distance decreases the exposure by four

- **SHIELDING** – Use lead aprons and lead shields whenever possible
Regulations Applicable to Radiation Safety

- State of Texas Radiation Safety Regulations
 - 289.226 - Registration of Radiation Machine Use and Services
 - 289.228 - Radiation Safety Requirements for Industrial Radiation Machines
Regulations

- The University operates under permits and licenses approved by the state.
- Observe the state regulations and operating procedures which apply to your work area, in order to protect yourself, your co-workers, members of the public and the environment.
Rights and Responsibilities of Radiation Workers

- You have the right to request, at any time, a history of your occupational radiation exposure and bioassay results.
- You have the right to contact the state and request an inspection, if you believe your institution is operating in an unsafe manner.
Rights and Responsibilities of Radiation Workers

- If you notice unsafe work conditions, such as:
 - An unsafe act by a co-worker
 - Radiation producing equipment not working properly
- You are **OBLIGATED** to report the unsafe conditions to the Radiation Safety Officer.
Dosimetry
Dosimetry Program

- Dosimetry is the process of measuring radiation exposures.
- It can be accomplished in many ways and by using different devices.
- Monitoring may be active (instant readings) or passive (readings obtained at some later date).
- Mostly we use passive monitors.
Dosimetry Program

- Personnel monitoring devices need to be stored in designated low-background locations in each work area.
- This is very important so we can monitor and account for background exposures when the badges are not being worn.
- When leaving a work for the day, ensure that dosimeters are left in the designated location.
Dosimetry Program

- Dosimetry is required while working in areas where exposures are expected to exceed 10% of the annual exposure limit.

- Most areas in the University have relatively low exposure rates.
Proper Wear of Dosimeters

- Whole body badges will be worn between the shoulders and the waist.
- Collar badges (head and neck) will be worn on the outside of protective garments.
- Ring badges will be worn on the dominant hand facing the source.
Exposure Investigations

- I screen exposure records when they are received to look for unusual exposures.

- The University has two action levels for radiation exposure
 - Level 1 – Exposures greater than 125 mrem/quarter but less than 375
 - Level 2 – Exposures greater than 375 mrem/quarter
Exposure Investigations

- For Level 1 exposure, you will be informed and reminded about time, distance, and shielding.

- For Level 2 exposures, you will be asked to provide an explanation of why your exposure was high.
Lost Dosimeters

- Lost dosimeters should be reported to the Radiation Safety Officer.
- The RSO will perform an investigation to determine the cause of the loss.
- The RSO will provide an replacement dosimeter as soon as a loss is reported.
Summary

- Characteristics of Ionizing Radiation
- Radiation Units
- Biological Effects
- Occupational Dose Limits
- ALARA Philosophy
- Regulations, Rights & Responsibilities
- Dosimetry
- Summary & Questions
QUESTIONS?